Example 2. The sphere is an orientable surface. Instead of proceeding to a direct calculation, let us resort to a general argument. The sphere can be covered by two coordinate neighborhoods (using stereographic projection; see Exercise 16 of Sec. 2-2), with parameters (u, v) and (\bar{u}, \bar{v}) , in such a way that the intersection W of these neighborhoods (the sphere minus two points) is a connected set. Fix a point p in W. If the Jacobian of the coordinate change at p is negative, we interchange u and v in the first system, and the Jacobian becomes positive. Since the Jacobian is different from zero in W and positive at $p \in W$, it follows from the connectedness of W that the Jacobian is everywhere positive. There exists, therefore, a family of coordinate neighborhoods satisfying Def. 1, and so the sphere is orientable.

By the argument just used, it is clear that if a regular surface can be covered by two coordinate neighborhoods whose intersection is connected, then the surface is orientable.

Before presenting an example of a nonorientable surface, we shall give a geometric interpretation of the idea of orientability of a regular surface in R^3 .

As we have seen in Sec. 2-4, given a system of coordinates $\mathbf{x}(u, v)$ at p, we have a definite choice of a unit normal vector N at p by the rule

$$N = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}(p). \tag{1}$$

Taking another system of local coordinates $\bar{\mathbf{x}}(\tilde{u}, \tilde{v})$ at p, we see that

$$\tilde{\mathbf{x}}_{\bar{u}} \wedge \tilde{\mathbf{x}}_{\bar{v}} = (\mathbf{x}_{\bar{u}} \wedge \mathbf{x}_{\bar{v}}) \frac{\partial(u, v)}{\partial(\bar{u}, \bar{v})},$$
(2)

where $\partial(u, v)/\partial(\bar{u}, \bar{v})$ is the Jacobian of the coordinate change. Hence, N will preserve its sign or change it, depending on whether $\partial(u, v)/\partial(\bar{u}, \bar{v})$ is positive or negative, respectively.

Thm. A regular surface S is "orientable" if I = N: S -> 5° = IR3 smooth normal field.

PROPOSITION 1. A regular surface $S \subset R^3$ is orientable if and only if there exists a differentiable field of unit normal vectors $N: S \to R^3$ on S.

Proof. If S is orientable, it is possible to cover it with a family of coordinate neighborhoods so that, in the intersection of any two of them, the change of coordinates has a positive Jacobian. At the points $p = \mathbf{x}(u, v)$ of each neighborhood, we define N(p) = N(u, v) by Eq. (1). N(p) is well defined, since if p belongs to two coordinate neighborhoods, with parameters (u, v) and (\bar{u}, \bar{v}) , the normal vector N(u, v) and $N(\bar{u}, \bar{v})$ coincide by Eq. (2). Moreover, by Eq. (1), the coordinates of N(u, v) in R^3 are differentiable functions of (u, v), and thus the mapping $N: S \to R^3$ is differentiable, as desired.

On the other hand, let $N: S \to R^3$ be a differentiable field of unit normal vectors, and consider a family of <u>connected</u> coordinate neighborhoods covering S. For the points $p = \mathbf{x}(u, v)$ of each coordinate neighborhood $\mathbf{x}(U)$, $U \subset R^2$, it is possible, by the continuity of N and, if necessary, by interchanging u and v, to arrange that

$$N(p) = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}.$$

In fact, the inner product

$$\left\langle N(p), \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|} \right\rangle = f(p) = \pm 1$$

is a continuous function on $\mathbf{x}(U)$. Since $\mathbf{x}(U)$ is connected, the sign of f is constant. If f = -1, we interchange u and v in the parametrization, and the assertion follows.

Proceeding in this manner with all the coordinate neighborhoods, we have that in the intersection of any two of them, say, $\mathbf{x}(u, v)$ and $\tilde{\mathbf{x}}(\tilde{u}, \tilde{v})$, the Jacobian

$$\frac{\partial(u, v)}{\partial(\bar{u}, \bar{v})}$$

is certainly positive; otherwise, we would have

$$\frac{\mathbf{X}_{u} \wedge \mathbf{X}_{v}}{|\mathbf{X}_{u} \wedge \mathbf{X}_{v}|} = N(p) = -\frac{\mathbf{\tilde{X}}_{a} \wedge \mathbf{\tilde{X}}_{\bar{v}}}{|\mathbf{\tilde{X}}_{a} \wedge \mathbf{\tilde{X}}_{\bar{v}}|} = -N(p),$$

which is a contradiction. Hence, the given family of coordinate neighborhoods after undergoing certain interchanges of u and v satisfies the conditions of Def. 1, and S is, therefore, orientable. Q.E.D.

A non-example: Möbius Strip

Example 3. We shall now describe an example of a nonorientable surface, the so-called $M\bar{o}bhus\,strip$. This surface is obtained (see Fig. 2-31) by considering the circle S^1 given by $x^2+y^2=4$ and the open segment AB given in the yz plane by y=2, |z|<1. We move the center c of AB along S^1 and turn AB about c in the cz plane in such a manner that when c has passed through an angle u, AB has rotated by an angle u/2. When c completes one trip around the circle, AB returns to its initial position, with its end points inverted.

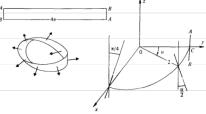


Figure 2-31

From the point of view of differentiability, it is as if we had identified the opposite (vertical) sides of a rectangle giving a twist to the rectangle so that each point of the side AB was identified with its symmetric point (Fig. 2-31).

It is geometrically evident that the Möbius strip M is a regular, non-orientable surface. In fact, if M were orientable, there would exist a differentiable field $N: M \to R^3$ of unit normal vectors. Taking these vectors along the circle $x^2 + y^2 = 4$ we see that after making one trip the vector N returns to its original position as -N, which is a contradiction. We shall now give an analytic proof of the facts mentioned above.

We shall now give an analytic proof of the facts mentioned above. A system of coordinates $x: U \to M$ for the Möbius strip is given by

$$\mathbf{x}(u, v) = \left(\left(2 - v\sin\frac{u}{2}\right)\sin u, \left(2 - v\sin\frac{u}{2}\right)\cos u, v\cos\frac{u}{2}\right),$$

where $0 < u < 2\pi$ and -1 < v < 1. The corresponding coordinate neighborhood omits the points of the open interval u = 0. Then by taking the

0-1-1-1-1-1-1

origin of the u's at the x axis, we obtain another parametrization $\tilde{\mathbf{x}}(\tilde{u},\tilde{v})$ given by

$$\begin{split} x &= \left\{2 - \tilde{v} \sin\left(\frac{\pi}{4} + \frac{\tilde{u}}{2}\right)\right\} \cos \tilde{u}, \\ y &= -\left\{2 - \tilde{v} \sin\left(\frac{\pi}{4} + \frac{\tilde{u}}{2}\right)\right\} \sin \tilde{u}, \\ z &= \tilde{v} \cos\left(\frac{\pi}{4} + \frac{\tilde{u}}{2}\right), \end{split}$$

whose coordinate neighborhood omits the interval $u = \pi/2$. These two coordinate neighborhoods cover the Möbius strip and can be used to show that it is a regular surface.

Observe that the intersection of the two coordinate neighborhoods is not connected but consists of two connected components:

$$W_1 = \left\{ x(u, v) : \frac{\pi}{2} < u < 2\pi \right\},$$

$$W_2 = \left\{ x(u, v) : 0 < u < \frac{\pi}{2} \right\}.$$

The change of coordinates is given by

$$\begin{split} \ddot{u} &= u - \frac{\pi}{2} \\ \ddot{v} &= v \end{split} \qquad \text{in } W_1, \\ \ddot{v} &= v \end{split}$$
 and
$$\ddot{u} &= \frac{3\pi}{2} + u \\ \ddot{v} &= -v \end{split} \qquad \text{in } W_2.$$
 It follows that
$$\frac{\partial (\ddot{u}, \ddot{v})}{\partial (u, \ddot{v})} = 1 > 0 \qquad \text{in } W_1$$
 and that
$$\frac{\partial (\ddot{u}, \ddot{v})}{\partial (u, \ddot{v})} = -1 < 0 \qquad \text{in } W_2.$$

To show that the Möbius strip is nonorientable, we suppose that it is possible to define a differentiable field of unit normal vectors $N: M \longrightarrow R^2$. Interchanging u and v if necessary, we can assume that

$$N(p) = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}$$

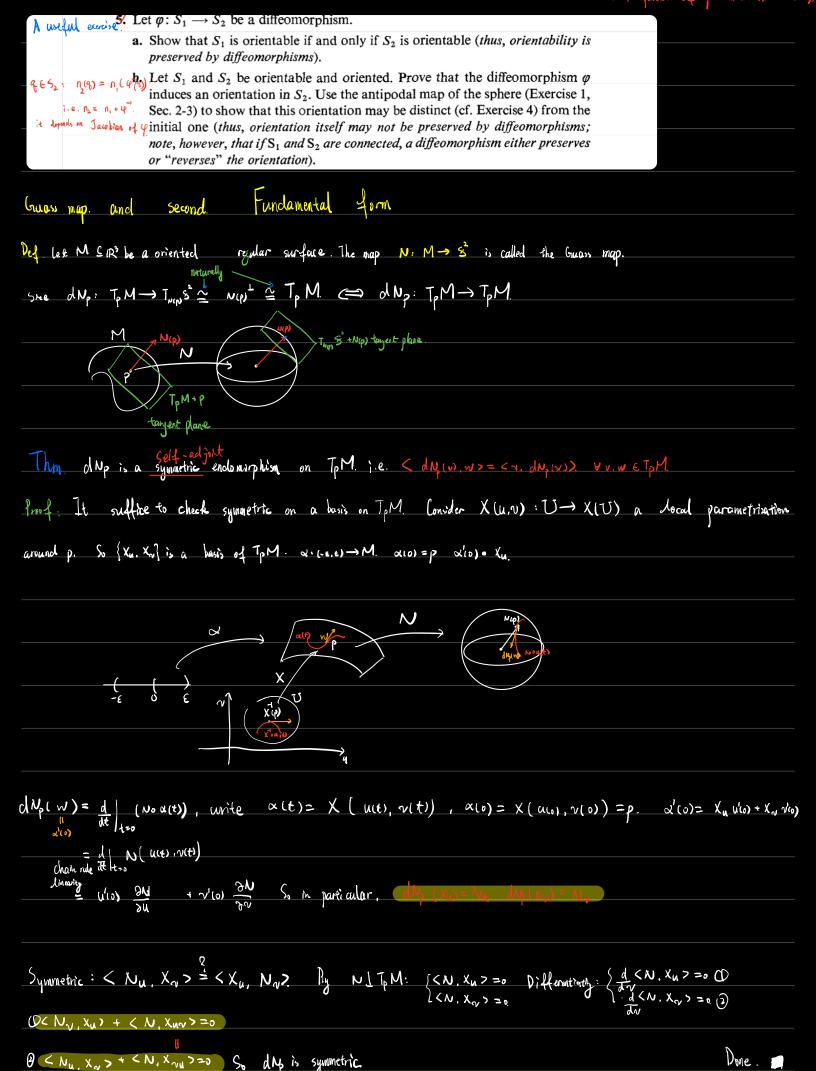
for any p in the coordinate neighborhood of $\mathbf{x}(u, v)$. Analogously, we may assume that

$$N(p) = \frac{\tilde{\mathbf{x}}_a \wedge \tilde{\mathbf{x}}_a}{|\tilde{\mathbf{x}}_a \wedge \tilde{\mathbf{x}}_a|}$$

at all points of the coordinate neighborhood of $\S(\vec{u},\vec{v})$. However, the Jacobian of the change of coordinates must be -1 in either W_1 or W_2 (depending on what changes of the type $w - v_1$ $\tilde{u} \to \tilde{v}$ has to be made). If v_1 is a point of that component of the intersection, then N(p) = -N(p), which is a contradiction.

We have already seen that a surface which is the graph of a differentiable function is orientable. We shall now show that a surface which is the inverse mage of a regular value of a differentiable function is also orientable. This is one of the reasons it is relatively difficult to construct examples of non-orientable, regular surfaces in R^o.

Question: here we only show that under


this specific parametrization, 14's impossible

to fiel a smooth normal field But

What about other possible parametrization

Insur: Athy h Nep) = xuxxv / [xxxx]

t's Independent of appropriately X(4)

Let's look at some examples.

Example 5. The method of the previous example, applied to the point p = (0, 0, 0) of the paraboloid $z = x^2 + ky^2$, k > 0, shows that the unit vectors of the x axis and the y axis are eigenvectors of dN_n , with eigenvalues 2 and 2k, respectively (assuming that N is pointing outwards from the region bounded by the paraboloid).

larametrize
$$\xi = k^2 + ky^2$$
 by $X(u,v) = (u,v, u^2 + kv^2)$. Then $X_0 = (1,0,2u)$ $v = (0,1,2ky)$

$$N(u.v) = \frac{x_u \times x_v}{|x_u \times x_v|} = \frac{(-2u.-2kv.1)}{\sqrt{4u^2+4k^2v^2+1}}$$

$$(a, b) = \left(u'(0), v'(0), 0 \right)$$

$$N(t) = \frac{(+2u(t), -2kv(t), 1)}{\int \frac{4u^{2} + 4k^{2}v^{2} + 1}{\int \frac{4u^{2} + 4u^{2} + 1}{\int \frac$$

$$(2 \text{ N}'(0)) = \left(+2 \text{N}'(0) - 2 \text{N}'(0) \right)$$

$$\Rightarrow dN_{p}\left(\left(u^{\prime}(s), v^{\prime}(o)_{10}\right)\right) = \left(+2u^{\prime}(o), -2v^{\prime}(o), o\right) \quad i.e. \quad dN_{p}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} 2a \\ -2k \end{bmatrix}.$$

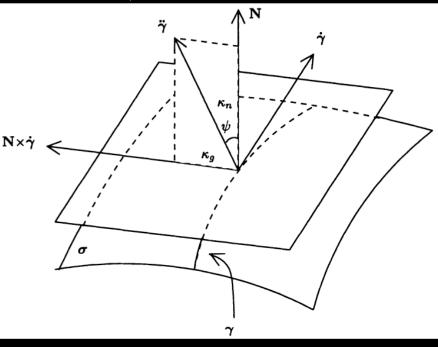
$$dN_p = \begin{pmatrix} 2 & \\ -2k & \\ 0 \end{pmatrix} \text{ wrt. } \{x_u, x_{ov}\}$$

Second Fundamental form Ip: IpSx IpS I R. defined

Matrix form: Suppose M has local chart F: U →M.

$$\mathbb{1}_{P}(F_{u},F_{v})=\langle N_{u},F_{v}\rangle=\langle N_{u},F_{u}\rangle=\langle N_{v},F_{u}\rangle$$

$$I_{p}(F_{u},F_{u})=\langle N,F_{uu}\rangle \qquad I_{p}(F_{r},F_{v})=\langle N,F_{r}v\rangle$$


$$I_{\gamma}(F_{u}, F_{u}) = \langle N, F_{uu} \rangle \qquad I_{\gamma}(F_{\tau}, F_{\nu}) = \langle N, F_{\tau \nu} \rangle$$

$$\left[I \right] = \left[\begin{array}{c} N \cdot F_{uv} \\ N \cdot F_{uv} \end{array} \right] \quad \text{real symmetric.}$$

$$N \cdot F_{uv} \quad N \cdot F_{vv}$$

$$\mathbb{I}_{p}(x,Y) = \begin{bmatrix} x^{u} & x^{u} \end{bmatrix} \begin{bmatrix} Y^{u} \\ Y^{v} \end{bmatrix}_{where} \quad X = \begin{bmatrix} F_{u} & F_{u} \end{bmatrix} \begin{bmatrix} x^{u} \\ x^{v} \end{bmatrix}$$

Greenmeny of Ip: Normal, Mean, Grussian, Greendesic curvatures

Ref. Elementry Diff. Geo. Andrew Pressley. Page 127

Consider a curve y(t)=f(u(t), v(t)) on M. where f is a local chart

WLOG. Suppose y is anc-lenyth

parametrized

Then kn=> where n's runned vector of y.

of σ , so $\dot{\gamma}$, N and N $\times \dot{\gamma}$ are mutually perpendicular unit vectors. Again since γ is unit-speed, $\ddot{\gamma}$ is perpendicular to $\dot{\gamma}$, and hence is a linear combination of N and N $\times \dot{\gamma}$:

$$\ddot{\gamma} = \kappa_n \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}. \tag{5}$$

than the kint ky

Proposition 6.1

If $\gamma(t) = \sigma(u(t), v(t))$ is a unit-speed curve on a surface patch σ , its normal curvature is given by

$$\kappa_n = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2,$$

where $Ldu^2 + 2Mdudv + Ndv^2$ is the second fundamental form of σ .

This result means that two unit-speed curves passing through a point P on a surface and with the same tangent vector at P have the same normal curvature at P, since both κ_n and the tangent vector $\dot{\gamma} = \sigma_u \dot{u} + \sigma_v \dot{v}$ depend only on u, v, \dot{u} and \dot{v} (and not on any higher derivatives of u and v).

Proof 6.1

We have, with N denoting the standard unit normal of σ ,

$$\begin{split} \kappa_n &= \mathbf{N}. \ddot{\boldsymbol{\gamma}} = \mathbf{N}. \frac{d}{dt} (\dot{\boldsymbol{\gamma}}) = \mathbf{N}. \frac{d}{dt} (\boldsymbol{\sigma}_u \dot{\boldsymbol{u}} + \boldsymbol{\sigma}_v \dot{\boldsymbol{v}}) \\ &= \mathbf{N}. (\boldsymbol{\sigma}_u \ddot{\boldsymbol{u}} + \boldsymbol{\sigma}_v \ddot{\boldsymbol{v}} + (\boldsymbol{\sigma}_{uu} \dot{\boldsymbol{u}} + \boldsymbol{\sigma}_{uv} \dot{\boldsymbol{v}}) \dot{\boldsymbol{u}} + (\boldsymbol{\sigma}_{uv} \dot{\boldsymbol{u}} + \boldsymbol{\sigma}_{vv} \dot{\boldsymbol{v}}) \dot{\boldsymbol{v}}) \\ \int &= L \dot{\boldsymbol{u}}^2 + 2M \dot{\boldsymbol{u}} \dot{\boldsymbol{v}} + N \dot{\boldsymbol{v}}^2, \end{split}$$

Definition 6.1

The principal curvatures of a surface patch are the roots of the equation

$$\det(\mathcal{F}_{II} \sim \kappa \mathcal{F}_{I}) = 0, \iff \text{exercellic of [I]}^{\text{II}}. \quad (11)$$

i.e.

$$\begin{vmatrix} L - \kappa E & M - \kappa F \\ M - \kappa F & N - \kappa G \end{vmatrix} = 0.$$
 (12)

⊁Proposition 6.3

Let κ_1 and κ_2 be the principal curvatures at a point P of a surface patch σ .

- (i) κ_1 and κ_2 are real numbers;
- (ii) if $\kappa_1 = \kappa_2 = \kappa$, say, then $\mathcal{F}_{II} = \kappa \mathcal{F}_I$ and (hence) every tangent vector to σ at P is a principal vector;
- (iii) if $\kappa_1 \neq \kappa_2$, then any two (non-zero) principal vectors \mathbf{t}_1 and \mathbf{t}_2 corresponding to κ_1 and κ_2 , respectively, are perpendicular.

In case (ii), P is called an umbilic.

Corollary 6.1 (Euler's Theorem)

Let γ be a curve on a surface patch σ , and let κ_1 and κ_2 be the principal curvatures of σ , with non-zero principal vectors \mathbf{t}_1 and \mathbf{t}_2 . Then, the normal curvature of γ is

$$\kappa_n = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta,$$

where θ is the angle between $\dot{\gamma}$ and \mathbf{t}_1 .

Corollary 6.2

The principal curvatures at a point of a surface are the maximum and minimum values of the normal curvature of all curves on the surface that pass through the point. Moreover, the principal vectors are the tangent vectors of the curves giving these maximum and minimum values.

Proposition 6.4

Let N be the standard unit normal of a surface patch $\sigma(u,v)$. Then,

$$\mathbf{N}_{u} = a\boldsymbol{\sigma}_{u} + b\boldsymbol{\sigma}_{v}, \quad \mathbf{N}_{v} = c\boldsymbol{\sigma}_{u} + d\boldsymbol{\sigma}_{v}, \tag{20}$$

where

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = -\mathcal{F}_I^{-1}\mathcal{F}_{II}.$$

The matrix $\mathcal{F}_I^{-1}\mathcal{F}_{II}$ is called the Weingarten matrix of the surface patch σ , and is denoted by W.

Proposition 7.1

Let $\sigma(u,v)$ be a surface patch with first and second fundamental forms

$$Edu^2 + 2Fdudv + Gdv^2$$
 and $Ldu^2 + 2Mdudv + Ndv^2$,

respectively. Then,

$$(i) \quad K = \frac{LN - M^2}{EG - F^2};$$

(ii)
$$H = \frac{LG - 2MF + NE}{LG - 2MF + NE}$$
.

(ii)
$$H = \frac{LG-2MF+NE}{2(EG-F^2)}$$
;

(iii) the principal curvatures are $H \pm \sqrt{H^2 - K}$.

Bet. A regular surface is called "minimal" if H = 0. Consider $S \subseteq \mathbb{R}^3$. $X: \mathcal{V} \to S$ is a local chart. $D \subset \overline{D} \subset \mathcal{V}$ is a bounded region in \mathcal{V} . $h: \overline{D} \to \mathbb{R}$ is a differentiable map. The permed variation of $X(\overline{D})$ determined by the is the map $\varphi: \overline{D} \times (-\epsilon, \epsilon) \to \mathbb{R}^3$ $\varphi(u, v, t) = X(u, v) + \epsilon h(u, v) N(u, v)$ (a family of surfaces) For $t \in (-\epsilon, \epsilon)$. Define $X^{t} = \varphi(\cdot \cdot t)$. Now $\int_{0}^{\infty} \left(X_{u}^{t} = X_{u} + th_{u} N + th N_{u} \right)$ $\begin{cases} \chi_{\nu}^{t} = \chi_{\nu} + t h_{\nu} N + t h N_{\nu} \end{cases}$ $\begin{bmatrix} I^{\dagger} \end{bmatrix} = \begin{bmatrix} E^{t} & F^{t} \\ F^{t} & G^{t} \end{bmatrix} \quad E^{t} = E + \left(2 h \langle N_{u}, X_{u} \rangle \right) t + O(t^{2})$ $F^{t} = F^{t} \quad h(\langle X_{u}, N_{v} \rangle + \langle X_{v}, N_{u} \rangle) t + O(t^{2})$ $\det(I_{t}) = E^{t}G^{t} - F^{t} = EG - F^{2} - 2h(Eg - 2Fft + Ge)t + O(t^{2})$ $= \left(EG - \overline{F}^2 \right) \left(I - 4hH \right) \quad \text{since} \quad H = \frac{E_8 - \lambda F_1 + Ge}{2(EG - \overline{F}^2)}$ Area of $X_t(\bar{D}) = \iint det(I_t) dudn$ $= \iint \left(EG - F^2 \right)^{\frac{1}{2}} \left(1 - 4 hH t \right)^{\frac{1}{2}} du dv$ $\frac{d}{dt}\Big|_{t=0} \frac{d}{dt}\Big|_{t=0} \left(X(\overline{D}) \right) = \frac{d}{dt}\Big|_{t=0} \int \int \left(EG - F^2 \right)^{\frac{1}{2}} \left(I - 4hHt \right)^{\frac{1}{2}} du dv$ =2 $\iint (EG-F')^{\frac{1}{2}} H \cdot h \, du \, dv \leftarrow lst \, variation \, of area.$ We want the surface "minimal". $X(\bar{D})$ minimal $\Rightarrow H=0 \Rightarrow Area(X(\bar{D}))$ is a critical point at t-a Conversely, if 1st variation of area =0 for all hours) then we must have $H\equiv 0$. Warning: minimal just means it's a critical point of area function (with fixed boundary) it does not really means "minimum", which involves computity 2nd order derivative.

Minimal surface

Meode sics
Def. A family of smooth curves on a regular surface S is a smooth map $T: (-\epsilon, \epsilon) \times [a,b] \rightarrow S$. $S:t$. (s,t) $\longrightarrow T(s,t)$
Fixing $S \in (-\epsilon, \epsilon)$. $\Gamma(S_i) = \gamma_s(\cdot)$ is a smooth curve on S . for as $t \leq b$.
A smooth curve y: [a,b] -> s is a geodesic if for all family of curves {xs(t)}_2<5<2 s.t.
• $\gamma_{s(t)} = \gamma(t)$ • $\gamma_{s(a)} = \gamma(a)$, $\gamma_{s(b)} = \gamma(b)$ $\forall s \in (-\epsilon, \epsilon)$ i.e. fixed end points.
$\frac{d}{ds} _{s=0} \mathcal{L}(\gamma_s) = 0. \text{ i.e. } \gamma \text{ is a critical point of arc-length variation}$ $\frac{d}{ds} _{s=0} \mathcal{L}(\gamma_s) = 0. \text{ i.e. } \gamma \text{ is a critical point of arc-length variation}$
de legel et les
The followly discussion is similar to deart action principle in physics course To get the equation of geodesics, it suffices to assume the target can be covered by a sizele ch
Suppose X: U -> S is a local chart that contains {75.} York) = X(4(5,t), v(5,t))
Let "i' i'' denote derivative unt. t. $R = horm$ squired of tangent vector of $r = E i^2 + 2Fi i + 6 i^2$
$L(\gamma_s) = \int_a^b [\gamma'_s] dt = \int_a^b R^{\frac{1}{2}} dt$ all are durking of s.t.
$\Rightarrow \frac{d}{ds} L(r_s) = \int_{\alpha}^{b} \frac{d}{ds} \left(R^{\frac{1}{2}} \right) dt = \frac{1}{2} \int_{a}^{b} R^{-\frac{1}{2}} \frac{\partial R}{\partial s} dt$
$\frac{\partial R}{\partial s} = \left[\frac{\partial E}{\partial u} \dot{u}^2 + 2 \frac{\partial F}{\partial u} \dot{u}^2 + \frac{\partial G}{\partial u} \dot{v}^2 \right] \frac{\partial U}{\partial s} + \left[\frac{\partial E}{\partial v} \dot{u}^2 + 2 \frac{\partial F}{\partial v} \dot{u}^2 + \frac{\partial G}{\partial v} \dot{v}^2 \right] \frac{\partial V}{\partial s}$
$+2\left[\pm \dot{u}+\mp \dot{v}\right]\frac{8\dot{u}}{85}+2\left[\mp \dot{u}+6\dot{v}\right]\frac{3\dot{v}}{85}$
usly boundary condition $Y_s(a) = Y(a)$ $Y_s(b) = Y(b)$ fixed, integration by parts
$\frac{d}{ds} \left _{s=0} L(\gamma_s) \right = \int_{a}^{b} P \frac{\partial u}{\partial s} + Q \frac{\partial v}{\partial s} dt \text{where}$
$\int P = \frac{1}{2} R^{\frac{1}{2}} \left(\frac{3E_{1}^{2} + 2}{3H_{1}^{2} + 2} \frac{3F_{1}^{2} + 3H_{2}^{2} + 3H_$
$ \begin{cases} P = \frac{1}{2} R^{\frac{1}{2}} \left(\frac{2E}{3R} \dot{u}^{2} + 2 \frac{3F}{3R} \dot{u}\dot{v} + \frac{3h}{3R} \dot{v}^{2} \right) - \frac{3}{3t} \left(R^{\frac{1}{2}} \left(E\dot{u} + F\dot{v} \right) \right) = 0 \\ Q = \frac{1}{2} R^{\frac{1}{2}} \left(\frac{3E}{3v} \dot{u}^{2} + 2 \frac{3F}{3v} \dot{u}\dot{v} + \frac{3h}{3v} \dot{v}^{2} \right) - \frac{3}{3t} \left(R^{\frac{1}{2}} \left(F\dot{u} + G\dot{v} \right) \right) = 0 \end{cases} $

To get a geodesic, we must have $P \equiv 0$ $Q \equiv 0$, for all variations, similar in minimal surface.
Warning geodesics does not guarantees the "minimum". It's just a critical point of acc-length
As a Corollary. If ris) is parametrized by arc-length. then
$Y(s)$ is a geodesic $\Longrightarrow \begin{cases} \frac{3}{35} (\text{Eit} \text{Fi}) = \frac{1}{2} (\frac{3E}{3N} \dot{u}^2 + 2\frac{3F}{3N} \dot{u}\dot{v}^2 + \frac{3G}{3N} \dot{v}^2) \end{cases}$
$\frac{\partial}{\partial s} \left(F \dot{u} + G \dot{v} \right) = \frac{1}{2} \left(\frac{\partial F}{\partial v} \dot{u}^2 + 2 \frac{\partial f}{\partial v} \dot{u} \dot{v} + \frac{\partial G}{\partial v} \dot{v}^2 \right)$
See "Notes on Tensor analyis" for geodesic eqs. using tensor notations
Corollany. Isometries preserve geodesics.
RMK Geometric interretation of geodesics: $\gamma(t)$ is geodesic iff $k_n = k(t)$, i.e.
kg = 0. The normal of the surface parallel to the normal of the curve.
Proof $\gamma(b) = \chi(u(b), v(b))$ $\gamma' = \dot{u}\chi_u + \dot{v}\chi_v$ $\gamma'' = \ddot{u}\chi_u + \ddot{v}\chi_v + \dot{u}\frac{d}{dt}\chi_u + \dot{v}\frac{dt}{dt}\chi_v = \ddot{u}\chi_u + \ddot{v}\chi_v + \left(\dot{u}\chi_u + \dot{v}\chi_u + \dot{v}\chi$
We assume Y(t) is arc-lenyoh parametrized
< v, xu>= üE+ vF + ù CXuu, Xu> + v < Xuv, Xu> + ù < Xuv, Xu> + v < Xvv, Xu>.
$E = \langle X_{u}, X_{u} \rangle \Rightarrow \frac{\partial E}{\partial u} = \sum \langle X_{uu}, X_{u} \rangle$
= 0, using equations of geodesics.
Smilarly r'L Xv. => r // N. => n // N.
Thin. Given upe M. unet, M. =! geodesic passing through p with tangent vector nat p.
Proof It follows from Existence and Uniqueness Than of sol. of ODEs applying to geodesic Eqs.

J. _